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Abstract. Two versions of a many-body perturbation theory for the computation 
of molecular interaction energies are investigated. The methods are based on the 
partitioning of the second-quantized form of the dimer Hamiltonian written either 
in the orthogonalized basis of the monomer MOs, or, alternatively, in the original 
non-orthogonal dimer basis set handling the overlap by the biorthogonal formal- 
ism. The zeroth-order Hamiltonian H ° is the sum of effective monomer Fockians 
and the zeroth-order wave functions are exact eigenfunctions of H °. Full antisym- 
metry is ensured by the second-quantized formalism. Basis set superposition error 
is accounted for by the counterpoise correction recipe. Results for He2, (H2)2 and 
(H20)2 indicate the reliability of the biorthogonal technique. 

Key words: Intermolecular interactions Perturbation theory - Second quantiza- 
tion - Biorthogonal basis 

1 Introduction 

Different versions of exchange-perturbation theories (X-PT) [-1-4] meet the diffi- 
culty that the eigenfunctions of the sum of the isolated monomer Hamiltonians are 
not antisymmetric. As antisymmetry was proved to be very important to all orders 
[5-7],  complicated formulae have been derived to fulfill this requirement. Using 
second quantization, however, it is possible to develop a transparent formalism 
to deal with this problem [8, 9]. The idea is to construct a zeroth-order effective 
Hamiltonian whose eigenvalues are the sums of isolated monomer energies, 
while antisymmetry is automatically ensured by the Fermion anticommutation 
rules. 

Second-quantization-based perturbation theories as applied to intermolecular 
interactions may differ from each other in selecting the basis set in which the 
calculations are performed and in choosing the interaction Hamiltonian. Both 
questions are related to the partitioning of the dimer Hamiltonian [9, 10]. The 
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second-quantization-based X-PT developed previously [8] dealt with a perturba- 
tion operator describing pure interaction terms excluding local correlation and 
basis set extension effects completely [11]. In spite of promising preliminary results 
[12], difficulties have been encountered in the short-range limit of inter-molecular 
potential curves [13, 14], which have been attributed to the improper partitioning 
of the dimer Hamiltonian [14]. 

The aim of this work is to investigate the peformance of second-quantization- 
based exchange perturbation theory for the case when all terms in the interaction 
Hamiltonian are kept. By the examples studied, it will be shown that this method 
does yield qualitatively correct results over the full range of the potential curves. 
This holds if one uses the biorthogonal technique to work in the non-orthogonal 
basis set of the monomer MOs as well as if one turns to an orthogonalized MO 
basis. 

2 Theory 

2.1 PT in orthogonalized basis set 

The working formulae for the perturbation theory take the simplest form if they are 
written in an orthogonal basis. Such a set can, e.g. be constructed in the following 
way. First, the MOs of the monomers constituting the molecular complex are 
computed. These MOs are then put together to form dimer orbitals, and the 
occupied MOs are projected out from the virtual subspace. Subsequently, the 
occupied and the virtual sets are orthogonalized separately, by Lifwdin's proced- 
ure. Accordingly, the projected virtuals are defined as 

~,* = 0,*  - P 0 , * ,  (1)  

where the asterisk refers to virtual MOs and P is the projector to the occupied 
subspace, which is non-diagonal due to overlap of occupied MOs on different 
fragments: 

o c c  

P = }-' 10~)(T-1)ik@kl (2) 
ik 

with T being the occupied block of the MO overlap matrix. Equation (1) can also 
be specified in terms of the MO coefficients c~,,: 

o c t  

g~*** = c m, -- Y', R m ( T -  1)ikCk~,, (3) 
ik 

where the Greek labels indicate AO indices and R is the full MO overlap matrix. 
After this projection, the occupied MOs Ok (as well as the virtuals 01*) are still 
overlapping among themselves, and they are not normalized either. The work- 
ing basis set was obtained by orthonormalizing them separately by Lrwdin's 
procedure. 

In this basis set the dimer Hamiltonian has the standard form 

+ + ~  ~ [l~VlAa]a+ua~+a, ax (4) = h , ,a ,  av 

in terms of spin orbitals. The integrals h,~ contain kinetic energy and nuclear 
attraction, while electron repulsion integrals [#vl2o-] are written in the [12112] 
convention. 
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A zeroth-order Hamiltonian can be conveniently defined as the sum of the 
Fockians constructed by the isolated orbital energies of the constituting monomers 
A and B (cf. Moller-Plesset partitioning): 

(A) (B) 
~ 0  = ffA -}- FB = 2 gCa?ai-I- 2 eBa+a'" (5) 

i i 

This operator is formally written in the orthogonalized dimer basis set, but its 
eigenvalues are the sums of the orbital energies of the isolated fragments: 

n o  7/o = (E o + E o) ~o, (6) 

where 
(A) 

E° = Z nl e/a (7) 
i 

and similarly for B. The zeroth-order wave function }go is an eigenfunction of/~o 
and it is the ant i symmetr i zed  product of the eigenfunctions of FA and if,: 

]~o)  + + + + ---a+2a+llvac ). (8) = a A , N a  " ' "  a A , 2 a A ,  l a B , N ,  , , 

Zeroth-order excited states are easily obtained by changing the occupation of the 
MOs. 

The physical meaning of the zeroth-order effective Hamiltonian in Eq. (5) is 
given by Eqs. (6) and (7). It is the operator which acts in the basis of orthogonalized 
monomer orbitals exactly in the same manner as the pure monomer Fockians act 
in the original monomer basis sets. Consequently, it has the same eigenvalues. ^ 

One may ask the question whether or not the effective Fockians FA and F, 
depend on the basis orbitals or on the intermolecular overlap. The answer is no, 
because the orbital dependence of a second quantized operator originates only 
from the integral list, while the creation/annihilation operators are abstract quan- 
tities which, e.g. need not be varied when evaluating energy derivatives [9, 15-18]. 
As the "integral list" in ffa and fib consists merely of the orbital energies of 
the isolated fragments, these operators do not depend on the orbitals and on the 

of H in the configuration space intermolecular overlap. Any matrix elements o 
constructed by orthonormalized MOs will contain only e ¢ and e~ yielding the 
standard Moller-Plesset denominators. 

The above consideration justifies to define the perturbation operator if" as the 
difference between the total and the zeroth-order Hamiltonians: 

/ t  = n ° + # .  (9) 

With this definition, the working formulae of the perturbation theory can be 
derived in a straightforward manner. The results up to the second order are listed 
below in terms of spin orbitals. The total electronic energy of the dimer is 
developed as 

E = E ° + E 1 + E z, 

where 
E ° + E ' = <~°In° + # I  ~.o> 

oct oct 

= ~ h.  + Y, ([ ikl ik]  - [iklki]), 
i i,k 

E 2 2 2 
----~ gpol_de I + gdisp-eorr 

(10) 

(11) 



336 P. R. Surj~m, C. P. del Valle 

2 in which the polarization-delocatization term Epol_dd emerges from single excita- 
tions and shifts the energy towards the dimer SCF value: 

o~ ,,irt (hi j* + Y~°,cc([iklj*k] - [ ik lk j*]))  2 2 Epo,-del = -- Z L (12) 
i j*  6 j *  - -  /~i 

The term 2 Edlsp-corr is due to double excitations: 

1 o~c v~t ( [ i k l j* l*]  - [ ik l l* j*])  2 
E,]i~p-eorr L L (13) 

4 i , k  j * , l *  ~'J* -~- ~1" - -  '~i - -  ~ k  " 

In the above equations the ei are the orbital energies of the monomers. 
The corresponding interaction terms are obtained as 

A E '  = E ° + E '  --  ESa cv - E scF. (14) 

2 The term Epo1-de, is an interaction energy by itself, while 2 Edisp-eorr will also contain 
the local correlation energy up to the second order: 

AE2isp 2 _ EAMP2 _ EBMP2. = Edisp-corr (15) 

If the local Hartree-Fock and second-order Moller-Plesset correlation ener- 
gies, E scv and E~ P2, are computed in the subset of basis functions on monomer 
A (and similarly for B), then the above interaction energies will suffer from basis set 
superposition error. To correct for this artifact we computed them in the dimer 
basis set according to the counterpoise correction recipe [19]. Another possibility 
to eliminate superposition error would be the application of the BSSE-free inter- 
action operator [9, 8, 11]. In the present work we decided to use the conventional 
Boys-Bernardi method which is commonly used for supermolecule calculations 
and permits us to investigate the performance of the many-body X-PT without 
mixing other kinds of problems which might appear if BSSE is corrected by other 
means. 

As the occupied orbitals are projected out from the virtuals ones prior to 
orthogonalizing the entire dimer basis set, the energy up to the first order is the 
correct expectation value of the dimer Hamiltonian calculated by the antisym- 
metrized monomer wave functions. This feature is very important to get reliable 
interaction energies. 

A closely related theory was published several years ago by Kvasni~ka et al. 
[20]. They have also developed a second-quantized intermolecular PT using an 
orthogonalized basis sets and the Moller-Plesset-type partitioning scheme. They 
separated the interaction terms from local ones by forming the differences between 
the integral lists in the original and orthogonalized basis sets. The basic difference 
between the present formulation and that in Ref. [20] is that Kvasni~ka et al. used 
a different basis set as they allowed the occupied and virtual MOs to mix in course 
of orthogonalization. To our knowledge, no numerical results have yet been 
published for their theory, though some calculations are in progress [21]. For the 
comparison of the present approach with other versions of intermolecular PT, see 
also the discussion in Sect. 4. 

2.2 Biorthogonal  formal i sm 

Slightly different formulae emerge if the above PT is developed in the non- 
orthogonal basis set constructed by the monomer MOs. The biorthogonal 
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formulation is convenient to handle the problem [8, 9, 22-24]. In this case, the 
dimer Hamiltonian takes the form 

+~ + 1  ~, [figlAG]a+a+a~aa, (16) f l  = hr,~a u av 
ltv ltv2~r 

where the tildes refer to the reciprocal space: h~,~ =Y,~(S-1)~,h~, 
c7, -- ~,o(S- ~)~,a,~, etc., where S is the MO overlap matrix. Test calculations and 
preliminary studies [14] indicated that it is essential to keep the occupied and 
virtual subspaces orthogonal to each other. Therefore, prior to constructing the 
biorthogonal orbitals, we applied the same projections as defined in Eqs. (1)-(3). 
Accordingly, the MO overlap matrix S is block-diagonal. 

As the direct-space creation operators a + and the reciprocal-space annihilation 
operators ~7~ obey the standard anticommutation rules [9], the similarity between 
the biorthogonal and the orthogonal formalism is obvious. The details of this 
formalism have already been published [8, 9, 14], so we report here merely the 
working formulae. The zeroth-order effective Hamiltonian is defined as 

(A) (B) 
f I °  = FA + FB = ~ eaa~ +gl, + ~ 8iBa+[ti • (17) 

i i 

The Hamiltonian/~o has the same physical significance as in the orthogonal case, 
its eigenvalues being the orbital energies of the isolated monomers. Again, it is 
independent of the orbitals and orbital overlaps. Up to the first order, we get 

occ occ 

E o + E 1 = (/~o + I~ )  = ~ h~ + ~ ([~'/7:[ik] - [Y/~lki]). (18) 
i i ,k  

The second-order formulae become 
2 

Epol_de 1 

. . . .  ~,t (h~j, + E~,¢~([~'/~[ j ' k ]  - [~[k j*  ]))(h~.~ + Z°k ¢¢ ([f*/~lik] - [ f*k lk i] ) )  
- 2 2  

and 

i j* ~j* - -  ~i 

(19) 

1 - l i k ] -  []*T* Iki]) 
Edisp_corr2 __ 4 ~-~i,k j*, l* ~ ~J* -~ ~l* - -  ~i - -  ~k 

(20) 

In deriving the above terms we have again used the full dimer Hamiltonian to 
0 define the perturbation operator if" = / ~  - n [14]. Different results are obtained 

for the energy corrections if one used merely the "physical" Coulombic interaction 
operator [8, 10, 11, 22, 23]. 

As mentioned above, it was found essential to project the occupied MOs out 
from the virtual subspace before forming the biorthogonal orbitals. This is in 
agreement with previous findings [13, 25]. Due to this orthogonality the first-order 
results as counted by Eqs. (10) and (18) are identical. The interaction energy terms 
as the second and higher orders, however, are different in the orthogonal and 
biorthogonal formulations, though naturally they converge to the same limit if 
both perturbation series are convergent. 
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3 Numerical results 

To illustrate the performance of the above formalism, sample calculations are 
reported below for the cases of He-He,  H e - H 2  and H z O - H 2 0  interactions. The 
basis sets chosen are medium-sized or somewhat larger; they have been used 
formerly by other authors to compute interaction energies for these systems 
[26-28]. 

Our aim was not to reproduce experimental potential curves, but to compare 
the accuracies of the two versions of the X-PT discussed above. Accordingly, 
we have also computed the MP2 potential curves in each case, which serve as 
references since they represent the supermolecule results E29] containing correla- 
tion energies to the same order. The MP2 curves, of course, were also corrected for 
basis set superposition error by the counterpoise method. 

The H e - H e  interaction was studied in two different basis sets (Figs. 1 and 2). 
We can observe that the potential curves are qualitatively correct for both cases, 
i.e. they are similar to the MP2 reference. In both basis sets the results of the 
biorthogonal X-PT are closer to that of MP2. The X-PT curve in orthogonal basis 
is somewhat displaced; it predicts less interaction in the [4s,3p,2d, lf] basis while it 
is too deep in [4s,3p,2d] one. (Note that this latter basis, though composed of lesser 
number of contracted functions, is much better for the H e - H e  interaction.) At the 
long range all the three curves coincide. The short-range behavior of the X-PT 
curves is also correct, even in the range R < 5 a.u. not displayed in Figs. 1 and 2. 

2 5  i i i i 

2O 

15 

~ 0 .............................................................................................................................................................................................. 

~ -10 
_z 

-15 

-20 

-25 i I i i i 
5 6 7 8 9 10 

R (Bohr )  

Fig. 1. Potential curves for the He-He interaction in a [4s,3p,2d] basis set ("aug-cc-pVTZ" in Ref. 
E26]). C]: supermolecule calculation, MP2; + : exchange-perturbation theory, biorthogonal formalism; 
~: exchange-PT, orthogonal basis 
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Fig. 2. Potential curves for the He-He interaction in a [4s,3p,2d, l f  ] basis set ("cc-pVQZ" in Ref. [26]). 
[]: supermolecule calculation, MP2; + :  exchange-PT, biorthogonal formalism; O: exchange-PT, 
orthogonal basis 

Table 1. Individual contributions to the interaction energy (a.u.) at the experimental minima 

H2-H2 (R = 6.5 Bohr) H20-H20 (R = 5.67 Bohr) 

Order Term Biorthogonal Orthogonal Biorthogonal Orthogonal 

1 Electrostatic + 0.000092 + 0.000092 - 0.00374 - 0.00374 
2 Pol-Del - 0.000019 - 0.000019 - 0.00182 - 0.00185 
1 + 2 Subtotal + 0.000073 + 0.000073 - 0.00556 - 0.00560 
oe SCF + 0.000070 - 0.00617 

2 Dispersion - 0.000117 - 0.000099 - 0.00172 - 0.00081 
1 + 2 Total - 0.000044 - 0.000026 - 0.00729 - 0.00641 
ov MP2 - 0.000056 - 0.00724 

T h e  c o n c l u s i o n s  for  t he  H 2 - H  2 sy s t em are  s imilar .  W e  h a v e  used  a J-7s3p] bas is  
set  [27] .  T h e  s u p e r m o l e c u l e  M P 2  a n d  the  b i o r t h o g o n a l  X - P T  curves  in this  bas is  
a re  qu i t e  s imi lar ,  wh i l e  t h e  o r t h o g o n a l  X - P T  p r e d i c t s  sma l l e r  i n t e r a c t i o n  at  a r o u n d  
e q u i l i b r i u m .  T h e  s h o r t -  a n d  the  l o n g - r a n g e  a s y m t o t i c s  a re  c o r r e c t  for  b o t h  cases.  
I n d i v i d u a l  c o n t r i b u t i o n s  to  t he  i n t e r a c t i o n  ene rg ies  a t  R = 6.5 a.u. a re  g iven  in 
T a b l e  1. A d d i n g  t h e  f i r s t - o r d e r  c o r r e c t i o n  to  t he  s e c o n d - o r d e r  p o l a r i z a t i o n -  
d e l o c a l i z a t i o n  c o r r e c t i o n  o r i g i n a t i n g  f r o m  s ingle  exc i t a t ions ,  t he  s u p e r m o l e c u l e  
S C F  resu l t s  a re  r e c o v e r e d  w i t h i n  an  e r r o r  o f  ~ 3  pH.  Th is  h o l d s  b o t h  for  t h e  
b i o r t h o g o n a l  a n d  o r t h o g o n a l  f o r m u l a t i o n s .  As to  t he  c o r r e l a t i o n  c o n t r i b u t i o n  to  
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the interaction energy, it amounts to - 5 6 -  70 = - 126 gH according to the 
supermolecule calculation, while it is - 117 and - 99 gH for the biorthogonal and 
orthogonal PTs, respectively. 

The similarity of the supermolecule and X-PT results can also be demonstrated 
for the water -water  interaction (Fig. 4). In the [4s,3p,2d/2slp] basis set used, the 
long-range and the short-range parts of the potential curves obtained by the 
supermolecular MP2 and both X-PT calculations are almost identical. At around 
equilibrium, the biorthogonal formulation gives results closer to MP2. The differ- 
ences in the predicted well depths and equilibrium distances are negligible. 

The partitioning of the interaction energy contributions for the water -water  
case is also shown in Table 1. The relative errors of the estimation of the SCF 
energy are 9 - i 0 %  for both versions. The dispersion energy is ca. 1.7 m H  by 
biorthogonal X-PT, 0 . 8 m H  in the orthogonal formulation, while the super- 
molecule result is 1.1 m H  in this basis set. 

We have not made a systematic numerical comparison of our results to those 
obtained by other formalisms as our aim was merely to test the applicability of 
biorthogonal and orthogonal versions of this PT. Some selected data for compari-  
son, however, are listed below. 

In the "aug-cc-pVTZ" basis set, MP2, MP3, MP4, CCSD, CCSD(T) and full-CI 
calculations were reported for the He dimer by Woon and Dunning [26]. The 
full-CI result gives 28 gH for the counterpoise-corrected interaction energy at the 

1 0 0  , , 
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O 

n- 
Lid 
I-- _z -50 

- I 0 0  I i I a 
6 7 8 9 10 

R (Bohr) 

Fig. 3. Potential curves for the Hz-H 2 interaction. The two molecules are coplanar and are in a 
T-shape arrangement. R is the distance between the centers of masses of the two molecules. Basis 
set [7s,3p] of Ref. [271. I-7: supermotecule calculation, MP2; + : exchange-PT, biorthogonal formalism; 
<5: exchange-PT, orthogonal basis 
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Fig. 4. Potential curves for the water-water interaction. The dimer is in a linear configuration, where 
each water molecule is frozen and R is the distance between the two oxygen atoms. The geometry 
and the [4s,3p, 2d/2s, lp] basis set are the same as in Ref. [28]. E]: supermolecule calculation, MP2; 
+ : exchange-PT, biorthogonal formalism; ~: exchange-PT, orthogonal basis 

R = 5.73 a.u. potential minimum. This compares to 17.9 gH at R = 5.9 a.u. (MP2, 
other supermolecule results are in between), and 15 (23) gH at 6 a.u. obtained by 
the present biorthogonal (orthogonal) version of PT (Fig. i). This interaction 
energy is 84% (129%) of the MP2 result. In a larger basis set, Tachikawa et al. [34] 
got a second-order estimate 31.7 gH at 5.6 a.u., which is 91% of the quoted 
experimental result (they did not report the MP2 value). Using a more 
sophisticated (and more complicated) theory and an explicitly correlated Gaussian 
geminal basis, Rybak et al. [39] got 33.7 gH at the same distance. Earlier, 
Chalasifiski and SzczCgniak [43] extracted second-order contributions obtained in 
different basis sets which gave 97% of the MP2 energy, 45 gH in their basis set. 
Recently, ~vviok et al. [41] by symmetry adapted perturbation theory obtained 
34.6 ~LH close to the van der Waals minimum in perfect agreement with experi- 
ments. 

For  the water-water  interaction, we cite the work by Rybak et al. [40]. The 
potential energy curves obtained by their symmetry adapted PT calculation differ 
more significantly from the supermolecule results as the curves reported in Fig. 4. 
In particular, they got ca. 5.6 kcal (instead of 4.3) for the interaction energy, while 
we got 4.2 (4.7) instead of the 4.6 MP2 result in the biorthogonal (orthogonal) 
formulations, respectively (cf. Fig. 4). This constitutes a clear success of the present 
approach, especially in light of the fact that we treat also SCF interactions by 
means of X-PT, not merely the correlation effect. 
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4 Discussion 

As well known, a central problem in intermolecular PT is that of antisymmetry. It 
is manifested in the dilemma whether to use ~o = d ~  ° or just ~b ° = ~A~B° o as the 
zeroth-order wave function the latter being an eigenfunction of the sum of the 
isolated monomer Hamiltonians written in the L2 space while the former being 
asymptotically correct. A clear and logical classification of all possible types of 
methods capable of handling the problem is contained in a recent review by 
Jeziorski et al. [36]. They distinguish "symmetric theories" from "symmetry- 
adapted" perturbation theories (SAPT). The latter start from an asymmetric/_/o 
whose eigenfunction is o o ~A~B, and it is the task of PT to enforce the wave function 
to be properly antisymmetric. In "symmetric" theories antisymmetry is always 
ensured at the expense of changing the partitioning the Hamiltonian so that 
~o = ~¢~bo~bo will be eigenfunction of H °. In this terminology, the formalism used 
in this paper belongs to the "symmetric" theories while the recent development by 
Jeziorski and coworkers 1-33, 36, 40, 41] are made within the "symmetry-adapted" 
framework. 

Both formalisms have their own significance. The SAPT has the advantage 
that it can be formulated in a basis-set-independent way, but it suffers from the 
drawback that symmetry adaptation can be quite complicated and in fact for 
many-electron systems it is possible to apply only when the antisymmetrizer does 
not enter the perturbation equations but merely in the energy corrections ("weak 
symmetry forcing"). In "symmetric" PTs all wave functions are automatically 
antisymmetric to any orders, which can be most conveniently done within the 
second-quantized formalism. This is a nice feature as, apart from the simplicity of 
the resulting equations, second quantization is a natural language for all many- 
body methods (MBPT, coupled cluster, etc.) so they can be discussed with inter- 
molecular interactions on an equal footing. The disadvantage of the "symmetric" 
formalism is that it is usually connected to a given basis set. It does not necessarily 
mean, however, that second-quantization-based perturbation theories would yield 
more basis-set-dependent results as those obtained from other formulations, as in 
actual calculation one has to turn to a basis set anyway. 

A different, though related, question to be discussed in connection with the 
present formalism is the possibility of direct evaluation of energy differences. As 
mentioned above, though Eqs.. (12) and (19) are direct interaction terms, the 
first-order corrections and the second-order dispersion-correlation terms appear 
as differences of large numbers, cf. Eqs. (14, 15). This is quite normal in a super- 
molecule calculation but not very elegant in a perturbation approach 1. The reason 
of this is that the perturbation operator as defined in Eq. (9) contains both 
monomer fluctuation and interaction potential. Accordingly, the present approach 
can be viewed from two entirely different standpoints. 

First, one can say that it is not an alternative of exchange-perturbation theories, 
rather a supermolecular approach. It differs from standard MP2 calculation in 
selecting the basis set, which does not consist of the dimer-optimized orthogonal 
MOs, but of the overlapping MOs of isolated fragments. In this view, the present 
perturbation theory is related to the formalism of Chatasifiski and Szcz~niak [42-1. 

1 We note that, following the idea suggested in Ref. [20], one can evaluate these energy terms directly by 
forming the differences between the integral lists of the interacting and non-interacting systems 
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- In the second view, one emphasizes that the present approach starts from the 
anti-symmetrized wave functions and the sum of the energies of the isolated 
subsystems at the zeroth order, and, assuming the PT series to converge, ends at the 
dimer wave function and energy. If one worked merely at the Hartree-Fock level 
or if one had a single electron in the system, this approach would indeed be an 
X-PT. At the correlated level, the formulae presented in Sect. 2 are plagued with 
mixing local correlation effects with interaction terms. From the pure theoretical 
point of view, this could be eliminated by starting from locally correlated functions 
instead of the HF ones. This would modify the working formulae and is feasible 
only for small, e.g. two-electron fragments for which similar procedures do exists 
within the framework of interacting geminals [37, 383. 

We can conclude that both versions of the second-order MBPT investigated in 
this paper give qualitatively correct potential curves. The R ~ oe and the R ~ 0 
asymptotic behaviors are quite exact, and acceptable estimates are obtained for 
equilibrium distances and well depths. The reliability of the results is that we can 
expect from a second-order theory [30-34]. The performance of the biorthogonal 
version is slightly better in the cases studied, and there is no sign of any "instability" 
of the biorthogonal formulation discussed previously [13, 14]. The two essential 
features which have led to this positive result are 

(1) the use of the full dimer Hamiltonian in the interaction operator 1~ = /~  - /~o ,  
and 
(2) the orthogonalization of the virtual and occupied subspaces before construct- 
ing the dimer basis set. 

Further improvement of the results presented in this paper is possible by evaluating 
third-order contributions. Preliminary calculations in this direction are encourag- 
ing [35]. 
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